Lake ecosystem tipping points and climate feedbacks (2024)

Aben, R. C. H., Barros, N., van Donk, E., Frenken, T., Hilt, S., Kazanjian, G., Lamers, L. P. M., Peeters, E. T. H. M., Roelofs, J. G. M., de Senerpont Domis, L. N., Stephan, S., Velthuis, M., Van de Waal, D. B., Wik, M., Thornton, B. F., Wilkinson, J., DelSontro, T., and Kosten, S.: Cross continental increase in methane ebullition under climate change, Nat. Comm., 8, 1682, https://doi.org/10.1038/s41467-017-01535-y, 2017. 

Aben, R. C. H., Velthuis, M., Kazanjian, G., Frenken, T., Peeters, E. T. H. M., Van de Waal, D. B., Hilt, S., de Senerpont Domis, L. N., Lamers, L. P. M., and Kosten, S.: Temperature response of aquatic greenhouse gas emissions differs between dominant plant types, Water Res., 226, 119251, https://doi.org/10.1016/j.watres.2022.119251, 2022. 

Adrian, R., O'Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D. O., Keller, W., Livingstone, D. M., Sommaruga, R., Straile, D., Van Donk, E., and Weyhenmeyer, G. A.: Lakes as sentinels of climate change, Limnol. Oceanogr., 54, 2283–2297, https://doi.org/10.4319/lo.2009.54.6_part_2.2283, 2009. 

Andersen, T., Carstensen, J., Hernández-Garcia, E., and Duarte, C. M.: Ecological thresholds and regime shifts: approaches to identification, Trends Ecol. Evol., 24, 49–52, https://doi.org/10.1016/j.tree.2008.07.014, 2008. 

Anderson, N. J., Heathcote, A. J., Engstrom, D. R., et al.: Anthropogenic alteration of nutrient supply increases the global freshwater carbon sink, Sci. Adv., 6, 2145, https://doi.org/10.1126/sciadv.aaw2145, 2020. 

Anufriieva, E. V. and Shadrin, N. V.: Extreme hydrological events destabilize aquatic ecosystems and open doors for alien species, Quaternary Int., 475, 11–15, https://doi.org/10.1016/j.quaint.2017.12.006, 2018. 

Armstrong McKay, D. I., Staal, A., Abrams, J. F., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S. E., Rockström, J., and Lenton, T. M.: Exceeding 1.5 °C global warming could trigger multiple climate tipping points, Science, 377, eabn7950, https://doi.org/10.1126/science.abn7950, 2022.  

Barichivicz, J., Briffa, K. R., Mynemi, R. B., et al.: Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011, Glob. Change Biol., 19, 3167–3183, 2017. 

Bathiany, S., Claussen, M., Brovkin, V., Raddatz, T., and Gayler, V.: Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model, Biogeosciences, 7, 1383–1399, https://doi.org/10.5194/bg-7-1383-2010, 2010. 

Beerling, D.: The Emerald Planet, Oxford Press, 2008. 

Bižić, M.: Phytoplankton photosynthesis: an unexplored source of biogenic methane emission from oxic environments, J. Plank. Res., 43, 822–830, https://doi.org/10.1093/plankt/fbab069, 2021. 

Betts, A. K. and Ball, J. H.: Albedo over the boreal forest, J. Geophys. Res., 102, 28901–28909, https://doi.org/10.1029/96JD03876, 1997. 

Bižić, M., Klintzsch, T., Ionescu, D., Hindiyeh, M.Y., Günthel, M., Muro-Pastor, A. M., Eckert, W., Urich, T., Keppler, F., and Grossart, H. P.: Aquatic and terrestrial cyanobacteria produce methane, Sci. Adv., 6, eaax5343, https://doi.org/10.1126/sciadv.aax5343, 2020. 

Bodirsky, B., Popp, A., Lotze-Campen, H., et al.: Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution, Nat. Commun., 5, 3858, https://doi.org/10.1038/ncomms4858, 2014. 

Bonilla, S., Aguilera, A., Aubriot, L., Huszar, V., Almanza, V., Haakonsson, S., Izaguirre, I., O'Farrell, I., Salazar, A., Becker, V., and Cremella, B.: Nutrients and not temperature are the key drivers for cyanobacterial biomass in the Americas, Harmful Algae, 121, 102367, https://doi.org/10.1016/j.hal.2022.102367, 2023. 

Boström, B., Jansson, M., and Forsberg, C. Phosphorus release from lake sediments, Arch. Hydrobiol. Beih. Ergebn. Limnol., 18, 5–59, 1982. 

Brabrand, Å., Faafeng, B. A., and Nilssen J. P. M.: Relative Importance of Phosphorus Supply to Phytoplankton Production: Fish Excretion versus External Loading, Can. J. Fish. Aquat. Sci., 47, 364–372, https://doi.org/10.1139/f90-038, 1990. 

Brownlie, W. J., Sutton, M. A., Heal, K. V., Reay, D. S., and Spears, B. M. (Eds.): Our Phosphorus Future, UK Centre for Ecology and Hydrology (UKCEH), Edinburgh, https://doi.org/10.13140/RG.2.2.17834.08645, 2022. 

Camargo, J. A., Alonso, A., and Salamanca, A.: Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates, Chemosphere, 58, 1255–1267, https://doi.org/10.1016/j.chemosphere.2004.10.044, 2005. 

Carrier-Belleau, C., Pascal, L., Nozais, C., and Archambault, P.: Tipping points and multiple drivers in changing aquatic ecosystems: A review of experimental studies, Limnol. Oceanogr., 67, S312–S330, https://doi.org/10.1002/lno.11978, 2022. 

Chamberlain, S. D., Hemes, K. S., Eichelmann, E., Szutu, D. J., Verfaillie, J. G., and Baldocchi, D. D.: Effect of Drought-Induced Salinization on Wetland Methane Emissions, Gross Ecosystem Productivity, and Their Interactions, Ecosystems, 23, 675–688, https://doi.org/10.1007/s10021-019-00430-5, 2020. 

Cole, J. J., Caraco, N., Kling, G., and Kratz, T. K.: Carbon Dioxide Supersaturation in the Surface Waters of Lakes, Science, 265, 1568–1570, https://doi.org/10.1126/science.265.5178.1568, 1997. 

Colina, M., Kosten, S., Silvera, N., Clemente, J. M., and Meerhoff, M.: Carbon fluxes in subtropical shallow lakes: contrasting regimes differ in CH4 emissions, Hydrobiologia, 849, 3813–3830, https://doi.org/10.1007/s10750-021-04752-1, 2021. 

Creed, I., Bergström, A. K., Trick, C. B., et al.: Global change-driven effects on dissolved organic matter composition: Implications for food webs of northern lakes, Glob. Change Biol., 24, 3692–3714, https://doi.org/10.1111/gcb.14129, 2018. 

Cunillera-Montcusí, D., Beklioğlu, M., Cañedo-Argüelles, M., et al.: Freshwater salinisation: a research agenda for a saltier world, Trend. Ecol. Evol., 37, 440–453, 2022. 

Davis, J. A., McGuire, M., Halse, S. A., Hamilton, D., Horwitz, P., McComb, A. J., Froend, R. H., Lyons, M., and Sim, L.: What happens when you add salt: predicting impacts of secondary salinisation on shallow aquatic ecosystems by using an alternative-states model, Austr. J. Bot., 51, 715–724, 2003. 

Davidson, T. A., Audet, J., Jeppesen, E., Landkildehus, F., Lauridsen, T. L., Søndergaard, M., and Syväranta, J.: Synergy between nutrients and warming enhances methane ebullition from experimental lakes, Nat. Clim. Change, 8, 156–160, https://doi.org/10.1038/s41558-017-0063-z, 2018. 

Davidson, T. A., Sayer, C. D., Jeppesen, E., et al.: Bimodality and alternative equilibria do not help explain long-term patterns in shallow lake chlorophyll-a, Nat. Comm., 14, 398, https://doi.org/10.1038/s41467-023-36043-9, 2023. 

Davidson, T. A., Søndergaard, M., Audet, J., Levi, E., Espositio, C., and Nielsen, A.: Temporary stratification promotes large greenhouse gas emissions in a shallow eutrophic lake, Biogeosciences, 21, 93–107, https://doi.org/10.5194/bg-21-93-2024, 2024. 

De Vries, W., Reinds, G.J., Gundersen, P., and Sterba, H.: The impact of nitrogen deposition on carbon sequestration in European forests and forest soils, Glob. Change Biol., 12, 1151–1173, https://doi.org/10.1111/j.1365-2486.2006.01151.x, 2006. 

de Wit, H., Valinia, S., Weyhenmeyer, G., et al.: Current browning of surface waters will be further promoted by wetter climate, Environ. Sci. Technol. Lett., 12, 430–435, https://doi.org/10.1021/acs.estlett.6b00396, 2016. 

Dillon, P. J. and Molot, L. A.: Long-term trends in catchment export and lake retention of dissolved organic carbon, dissolved organic nitrogen, total iron and total phosphorus: The Dorset, Ontario, study, 1978–1998, J. Geophys. Res.-Biogeo., 110, G01002, https://doi.org/10.1029/2004JG000003, 2005. 

Downing, J. A., Polasky, S., Olmstead, S. M., and Newbold, S. C.: Protecting local water quality has global benefits, Nat. Comm., 12, 2709, https://doi.org/10.1038/s41467-021-22836-3, 2021. 

Elser, J. J., Andersen, T., Baron, J., et al.: Shifts in Lake N : P Stoichiometry and Nutrient Limitation Driven by Atmospheric Nitrogen Deposition, Science, 326, 835–837, https://doi.org/10.1126/science.1176199, 2009. 

Emmerton, C. A., Lesack, L. F. W., and Vincent, W. F.: Mackenzie River nutrient delivery to the Arctic Ocean and effects of the Mackenzie Delta during open water conditions, Global Biogeochem. Cy., 22, GB1024, https://doi.org/10.1029/2006GB002856, 2008. 

Finstad, A., Andersen, T., Larsen, S., et al.: From greening to browning: Catchment vegetation development and reduced S-deposition promote organic carbon load on decadal time scales in Nordic lakes, Sci. Rep., 6, 31944, https://doi.org/10.1038/srep31944, 2016. 

Gordon, L. J., Peterson, G. D., and Bennett, E. M.: Agricultural modifications of hydrological flows create ecological surprises, Trends Ecol. Evol., 23, 211–219, https://doi.org/10.1016/j.tree.2007.11.011, 2008. 

Grasset, C., Sobek, S., Scharnweber, K., et al.: The CO2-equivalent balance of freshwater ecosystems is non-linearly related to productivity, Glob. Change Biol., 26, 5705–5715, https://doi.org/10.1111/gcb.15284, 2020. 

Gremmen, T., van Dijk, G., Postma, J., Colina, M., de Senerpont Domis, L. N., Velthuis, M., van de Haterd, R., Kuipers, F., van Rossum, H., Smolders, A. J., and Kosten, S.: Factors influencing submerged macrophyte presence in fresh and brackish eutrophic waters and their impact on carbon emissions, Aquat. Bot., 187, 103645, https://doi.org/10.1016/j.aquabot.2023.103645, 2023. 

Guay, K. C., Beck, P. S. A., Berner, L. T., Goetz, S. J., Baccini, A., and Buermann, W.: Vegetation productivity patterns at high northern latitudes: a multi-sensor satellite data assessment, Glob. Change Biol., 20, 3147–3158, https://doi.org/10.1111/gcb.12647, 2014. 

Gutierrez, M. F., Tavşanoğlu, Ü.N., Vidal, N., Yu, J., Teixeira-de Mello, F., Çakiroglu, A. I., He, H., Liu, Z., and Jeppesen, E.: Salinity shapes zooplankton communities and functional diversity and has complex effects on size structure in lakes, Hydrobiologia,813, 237–255, https://doi.org/10.1007/s10750-018-3529-8, 2018. 

Hastie, A., Lauerwald, R., Weyhenmeyer, G., Sobek, S., Verpoorter, C., and Regnier, P.: CO2 evasion from boreal lakes: Revised estimate, drivers of spatial variability, and future projections, Glob. Change Biol., 24, 711–728, https://doi.org/10.1111/gcb.13902, 2017. 

Heathcote, A., Anderson, N., Prairie, Y., Engstrom, D. R., and del Giorgio, P. A.: Large increases in carbon burial in northern lakes during the Anthropocene, Nat. Commun., 6, 10016, https://doi.org/10.1038/ncomms10016, 2015. 

Herbert, E. R., Boon, P., Burgin, A. J., Neubauer, S. C., Franklin, R. B., Ardón, M., Hopfensperger, K. N., Lamers, L. P. M., and Gell, P.: A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands, Ecosphere, 6, 1–43, https://doi.org/10.1890/ES14-00534.1, 2015. 

Hessen, D. O. and Andersen, T.: Carbon metabolism in a humic lake: Pool sizes and cycling through zooplankton, Limnol. Oceanogr., 35, 84–99, https://doi.org/10.4319/lo.1990.35.1.0084, 1990. 

Hessen, D. O., Andersen, T., Larsen, S. Skjelkvåle, B. L., and de Wit, H.: Nitrogen deposition, catchment productivity, and climate as determinants of lake stoichiometry, Limnol. Oceanogr., 54, 2520–2528, https://doi.org/10.4319/lo.2009.54.6_part_2.2520, 2009. 

Hessen, D. O., Faafeng, B. A., Smith, V. H. Bakkestuen, V., and Walseng, B.: Extrinsic and intrinsic controls of zooplankton diversity in lakes, Ecology, 87, 433–443, https://doi.org/10.1890/05-0352, 2006. 

Hessen, D. O., Tombre, I. M., van Geest, G., and Alfsnes, K.: Global change and ecosystem connectivity: How geese link fields of central Europe to eutrophication of Arctic freshwaters, Ambio, 46, 40–47, https://doi.org/10.1007/s13280-016-0802-9, 2017. 

Hillebrand, H., Donohue, I., Harpole, W. S., et al.: Thresholds for ecological responses to global change do not emerge from empirical data, Nat. Ecol. Evol., 4, 1502–1509, https://doi.org/10.1038/s41559-020-1256-9, 2020. 

Hilt, S., Brothers, S., Jeppesen, E., Veraart, A. J., and Kosten, S.: Translating regime shifts in shallow lakes into changes in ecosystem functions and services, BioScience, 67, 928–936, https://doi.org/10.1093/biosci/bix106, 2017. 

Hoffman, D. K., McCarthy, M. J., Boedecker, A. R., Myers, J. A., and Newell, S. E.: The role of internal nitrogen loading in supporting non-N-fixing harmful cyanobacterial blooms in the water column of a large eutrophic lake, Limnol. Oceanogr., 67, 2028–2041, https://doi.org/10.1002/lno.12185, 2022. 

Horppila, J., Keskinen, S., Nurmesniemi, M., Nurminen, L., Pippingsköld, E., Rajala, S., Sainio, K., and Estlander, S.: Factors behind the threshold-like changes in lake ecosystems along a water colour gradient: The effects of dissolved organic carbon and iron on euphotic depth, mixing depth and phytoplankton biomass, Freshw. Biol., 68, 1031–1040, https://doi.org/10.1111/fwb.14083, 2023. 

Huang, J.-G., Bergeron, Y., Denneler, B., Berninger, F., and Tardif, J.: Response of Forest Trees to Increased Atmospheric CO2, Crit. Rev. Plant Sci., 26, 265–283, https://doi.org/10.1080/07352680701626978, 2007. 

Huang, S., Zhang, K., Lin, Q., Liu, J., and Shen, J.: Abrupt ecological shifts of lakes during the Anthropocene, Earth-Sci. Rev., 227, 103981, https://doi.org/10.1016/j.earscirev.2022.103981, 2022. 

Humborg, C., Smedberg, E., Blomqvist, S., et al.: Nutrient variations in subarctic Swedish rivers. Landscape control of land-sea fluxes, Limnol. Oceanogr., 49, 1871–1884, 2004. 

Imboden, D. M.: Phosphorus model of lake eutrophication, Limnol. Oceanogr., 19, 297–304, https://doi.org/10.4319/lo.1974.19.2.0297, 1974. 

Isles, P., Creed, I., Hessen, D. O., et al.: Widespread synchrony in phosphorus concentrations in northern lakes linked to winter temperature and summer precipitation, Limnol. Oceanogr. Lett., 8, 639–648, https://doi.org/10.1002/lol2.10318, 2023. 

Jenny, J.-P., Francus, P., Normandeau, A., et al.: Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure, Glob. Change Biol., 22, 1481–1489, https://doi.org/10.1111/gcb.13193, 2015. 

Jeppesen, E., Kristensen, P., Jensen, J. P., Søndergaard, M., Mortensen, E., and Lauridsen, T.: Recovery resilience following a reduction in external phosphorus loading of shallow, eutrophic Danish lakes: duration, regulating factors and methods for overcoming resilience, Mem. Ist. Ital. Idrobiol., 48, 127–148, 1991. 

Jeppesen, E., Søndergaard, M., Pedersen, A., Jürgens, K., Strzelczak, A., Lauridsen, T., and Johansson, L.: Salinity Induced Regime Shift in Shallow Brackish Lagoons, Ecosystems, 10, 48–58, https://doi.org/10.1007/s10021-006-9007-6 , 2007. 

Jeppesen, E., Kronvang, B., Meerhoff, M., Søndergaard, M., Hansen, K. M., Andersen, H. E., Lauridsen, T. L., Beklioglu, M., Ozen, A., and Olesen, J. E.: Climate change effects on runoff, phosphorus loading and lake ecological state, and potential adaptations, J. Env. Qual., 38, 1930–1941, https://doi.org/10.2134/jeq2008.0113, 2009. 

Jeppesen, E., Trolle, D., Davidson, T. A., Bjerring, R., Søndergaard, M., Johansson,L. S., Lauridsen, T. L., and Meerhoff, M.: Major changes in CO2 efflux when shallow lakes shift from a turbid to a clear water state, Hydrobiologia, 778, 33–44, https://doi.org/10.1007/s10750-015-2469-9, 2016. 

Jeppesen, E., Brucet, S., Naselli-Flores, L., Papastergiadou, E., Stefanidis, K., Noges, T., Noges, P., Attayde, J. L., Zohary, T., and Coppens, J.: Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity, Hydrobiologia, 750, 201–227, https://doi.org/10.1007/s10750-014-2169-x, 2015. 

Kahlert, M., Rühland, K. M., Lavoie, I., et. al.: Biodiversity patterns of Arctic diatom assemblages in lakes and streams: Current reference conditions and historical context for biomonitoring, Freshw. Biol., 67, 116–140, https://doi.org/10.1111/fwb.13490, 2020. 

Kaijser, W., Kosten, S., and Hering, D.: Salinity tolerance of aquatic plants indicated by monitoring data from the Netherlands, Aquat. Bot., 158, 103129, https://doi.org/10.1016/j.aquabot.2019.103129, 2019. 

Keller, P. S., Catalán, N., von Schiller, D., et al.: Global CO2 emissions from dry inland waters share common drivers across ecosystems, Nat. Commun., 11, 2126, https://doi.org/10.1038/s41467-020-15929-y, 2020. 

Kosten, S., Kamarainen, A., Jeppesen, E., van Nes, E. H., Peeters, E. T. H. M., Mazzeo, N., Sass, L., Hauxwell, J., Hansel-Welch, N., Lauridsen, T. L., Søndergaard, M., Bachmann, R. W., Lacerot, G., and Scheffer, M.: Climate-related differences in the dominance of submerged macrophytes in shallow lakes, Glob. Change Biol., 15, 2503–2517, https://doi.org/10.1111/j.1365-2486.2009.01969.x, 2009. 

Kritzberg, E. S.: Centennial‐long trends of lake browning show major effect of afforestation, Limnol. Oceanogr. Lett., 2, 105–112, 2017. 

Lade, S. J., Wang-Erlandsson, L., Staal, A., et al.: Empirical pressure-response relations can benefit assessment of safe operating spaces, Nat. Ecol. Evol., 5, 1078–1079, https://doi.org/10.1038/s41559-021-01481-5, 2021. 

Langer, M., Westermann, S., Boike, J., Kirillin, G., Peng, S., and Krinner, G.: Rapid degradation of permafrost underneath waterbodies in tundra landscapes – Toward a representation of thermokarst in land surface models, JGR Earth Surf., 121, 2446–2470, https://doi.org/10.1002/2016JF003956, 2016. 

Larsen, S., Andersen, T., and Hessen, D. O.: Predicting organic carbon in lakes from climate drivers and catchment properties, Global Biogeochem. Cy., 25, GB3007, https://doi.org/10.1029/2010GB003908, 2011a. 

Larsen, S., Andersen, T., and Hessen, D. O.: Climate change predicted to cause severe increase of organic carbon in lakes, Glob. Change Biol., 17, 1186–1192, 2011b. 

Larsen, S., Andersen, T., and Hessen, D. O.: The pCO2 in boreal lakes: Organic carbon as a universal predictor?, Global Biogeochem. Cy., 25, GB2012, https://doi.org/10.1029/2010GB003864, 2011c. 

Lawrence, D., Coe, M., Walker, W., et al.: The Unseen Effects of Deforestation: Biophysical Effects on Climate, Front. Forest Glob. Change, 5, 756115, https://doi.org/10.3389/ffgc.2022.756115, 2022. 

Lenton, T. M., Armstrong McKay, D. I., Loriani, S., Abrams, J. F., Lade, S. J., Donges, J. F., Milkoreit, M., Powell, T., Smith, S. R., Zimm, C., Buxton, J. E., Bailey, E., Laybourn, C., Ghadiali, A., and Dyke, J. G. (Eds.): 2023, The Global Tipping Points Report 2023, University of Exeter, Exeter, UK, https://global-tipping-points.org (last access: 17 April 2024), 2023. 

Li, Y., Shang, J., Zhang, C., Zhang, W., Niu, L., Wang, L., and Zhang, H.: The role of freshwater eutrophication in greenhouse gas emissions: A review, Sci. Total Environ., 768, 144582, https://doi.org/10.1016/j.scitotenv.2020.144582, 2021. 

Lindroth, A. and Tranvik, L.: Accounting for all territorial emissions and sinks is important for development of climate mitigation policies, Carbon Balance Mgm., 16, 10, https://doi.org/10.1186/s13021-021-00173-8, 2021. 

Maberly, S. C., O'Donnell, R. A., Woolway, R. I., et al.: Global lake thermal regions shift under climate change, Nat. Commun., 11, 1232, https://doi.org/10.1038/s41467-020-15108-z, 2020. 

MacDougall, A. H., Frölicher, T. L., Jones, C. D., Rogelj, J., Matthews, H. D., Zickfeld, K., Arora, V. K., Barrett, N. J., Brovkin, V., Burger, F. A., Eby, M., Eliseev, A. V., Hajima, T., Holden, P. B., Jeltsch-Thömmes, A., Koven, C., Mengis, N., Menviel, L., Michou, M., Mokhov, I. I., Oka, A., Schwinger, J., Séférian, R., Shaffer, G., Sokolov, A., Tachiiri, K., Tjiputra , J., Wiltshire, A., and Ziehn, T.: Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2, Biogeosciences, 17, 2987–3016, https://doi.org/10.5194/bg-17-2987-2020, 2020. 

Marcé, R., Obrador, B., Gómez-Gener, L., Catalán, N., Koschorreck, M., Arce, M. I., Singer, G., and von Schiller, D.: Emissions from dry inland waters are a blind spot in the global carbon cycle, Earth-Sci. Rev., 188, 240–248, https://doi.org/10.1016/j.earscirev.2018.11.012, 2019. 

Meerhoff, M., Audet, J., Davidson, T. A., De Meester, L., Hilt, S., Kosten, S., Liu, Z., Mazzeo, N., Paerl, H., Scheffer, M., and Jeppesen, E.: Feedback between climate change and eutrophication: revisiting the allied attack concept and how to strike back, Inland Waters, 12, 187–204, https://doi.org/10.1080/20442041.2022.2029317, 2022. 

Messager, M., Lehner, B., Grill, G., et al.: Estimating the volume and age of water stored in global lakes using a geo-statistical approach, Nat. Commun., 7, 13603, https://doi.org/10.1038/ncomms13603, 2016. 

Meyer-Jacob, C., Labaj, A. L., Paterson, A. M., Edwards, B. A., Keller, W., Cumming, B. F., and Smol, J. P.: Re-browning of Sudbury (Ontario, Canada) lakes now approaches pre-acidification lake-water dissolved organic carbon levels, Sci. Total Environ., 725, 138347, https://doi.org/10.1016/j.scitotenv.2020.138347, 2020. 

Monteith., D. T., Henry, P. H. Hruska, J., et al.: Long-term rise in riverine dissolved organic carbon concentration is predicted by electrolyte solubility theory, Sci. Adv., 9, 3491, https://doi.org/10.1126/sciadv.ade3491, 2023. 

Moss, B.: Water pollution by agriculture, Philos. T. R. Soc. B, 363, 659–666, https://doi.org/10.1098/rstb.2007.2176, 2008. 

Moss B., Kosten, S., Meerhoff, M., Battarbee, R. W., Jeppesen, E., Mazzeo, N., Havens, K., Lacerot, G., Liu, Z., De Meester, L., Paerl, H., and Scheffer, M.: Allied attack: climate change and nutrient pollution, Inland Waters, 1, 101–105, https://doi.org/10.5268/IW-1.2.359, 2011. 

Moss, B., Jeppesen, E., Søndergaard, M., et al.: Nitrogen, macrophytes, shallow lakes and nutrient limitation: resolution of a current controversy?, Hydrobiologia, 710, 3–21, https://doi.org/10.1007/s10750-012-1033-0, 2013. 

Negandhi, K., Laurion, I., and Lovejoy, C.: Temperature effects on net greenhouse gas production and bacterial communities in arctic thaw ponds, FEMS Microbiol. Ecol., 92, fiw202, https://doi.org/10.1093/femsec/fiw202, 2016. 

Ockenden, M. C., Hollaway, M. J., Beven, K. J., Collins, A. L., Evans, R., Falloon, P. D., Forber, K. J., Hisco*ck, K. M., Kahana, R., Macleod, C. J. A., and Tych, W.: Major agricultural changes required to mitigate phosphorus losses under climate change, Nat. Commun., 8, 161, https://doi.org/10.1038/s41467-017-00232-0, 2017. 

Olefeldt, D., Heffernan, L., Jones, M. C., Sannel, B. K., Treat, C. C., and Turetsky, M. R.: Permafrost Thaw in Northern Peatlands: Rapid Changes in Ecosystem and Landscape Functions, edited by: Canadell, J. G. and Jackson, R. B., Ecosystem Collapse and Climate Change, Springer, 27–67, https://doi.org/10.4319/lo.2010.55.1.0115, 2021. 

Opdal, A. F., Andersen, T., Hessen, D. O., et al.: Tracking freshwater browning and coastal water darkening from boreal forests to the Arctic Ocean, Limnol. Oceanogr. Lett., 8, 611–619, https://doi.org/10.1002/lol2.10320, 2023. 

Oppenheimer, M., Glavovic, B. C., Hinkel, J. R., et al. (Eds.): IPCC Special report, Chap. 4, Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities, Cambridge University Press, Cambridge, UK and New York, NY, USA, 321–445, https://doi.org/10.1017/9781009157964.006. 

Paerl, H. W. and Huisman, J.: Blooms Like It Hot, Science, 320, 57–58, https://doi.org/10.1126/science.1155398, 2008. 

Paerl, H. W., Scott, J. T., McCarthy, M. J., et al.: It takes two to tango: when and where dual nutrient (N and P) reductions are needed to protect lakes and downstream ecosystems, Environ. Sci. Technol., 50, 10805–10813, https://doi.org/10.1021/acs.est.6b02575, 2016. 

Paranaíba, J. R., Aben, R., Barros, N. G., et al.: Cross-continental importance of CH4 emissions from dry inland-waters, Sci. Total Environ., 814, 151925, https://doi.org/10.1016/j.scitotenv.2021.151925, 2021. 

Piao, S., Friedlingstein, P., Ciais, P., et al.: Effect of climate and CO2 changes on the greening of the Northern Hemisphere over the past two decades, Geophys. Res. Lett., 33, 22, https://doi.org/10.1029/2006GL028205, 2006. 

Rahel, F. J. and Olden, J. D.: Assessing the effects of climate change on aquatic invasive species, Conserv. Biol., 22, 521–533, https://doi.org/10.1111/j.1523-1739.2008.00950.x, 2008. 

Raymond, P., Hartmann, J., Lauerwald, R., et al.: Global carbon dioxide emissions from inland waters, Nature, 503, 355–359, https://doi.org/10.1038/nature12760, 2013. 

Reynolds, S. A. and Aldridge, D. C.: Global impacts of invasive species on the tipping points of shallow lakes, Glob. Change Biol., 27, 6129–6138, https://doi.org/10.1111/gcb.15893, 2021. 

Ricciardi, A. and MacIsaac, H. J.: Recent mass invasion of the North American Great Lakes by Ponto–Caspian species, Trends Ecol. Evol., 15, 62–65, https://doi.org/10.1016/S0169-5347(99)01745-0, 2000. 

Richardson, D. C., Holgerson, M. A., Farragher, M. J., et al.: A functional definition to distinguish ponds from lakes and wetlands, Sci. Rep., 12, 10472, https://doi.org/10.1038/s41598-022-14569-0, 2022. 

Rockström, J., Steffen, W., Noone, K., et al.: A safe operating space for humanity, Nature, 461, 472–475, https://doi.org/10.1038/461472a, 2009. 

Rockström, J., Gupta, J., Qin, D., et al.: Safe and just Earth system boundaries, Nature, 619, 102–111, https://doi.org/10.1038/s41586-023-06083-8, 2023. 

Rosén, P.: Total organic carbon (TOC) of lake water during the Holocene inferred from lake sediments and near-infrared spectroscopy (NIRS) in eight lakes from northern Sweden, Biogeochemistry, 76, 503–516, https://doi.org/10.1007/s10533-005-8829-1, 2005. 

Rühland, K. M., Smol, J. P., Wang, X., and Muir, D. C. G.: Limnological characteristics of 56 lakes in the Central Canadian Arctic treeline region, J. Limnol., 62, 9–27, 2003. 

Rühland, K. M., Paterson, A. M., and Smol, J. P.: Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes, Glob. Change Biol., 14, 2740–2754, https://doi.org/10.1111/j.1365-2486.2008.01670.x, 2008. 

Scheffer, M., Hosper, S. H., Meijer, M.-L., et al.: Alternative equilibria in shallow lakes, Trends Ecol. Evol., 8, 275–279, https://doi.org/10.1016/0169-5347(93)90254-M, 1993. 

Scheffer, M., Carpenter, S., J., Foley, A. Folke, C., and Walker, B.: Catastrophic shifts in ecosystems, Nature, 413, 591–596, https://doi.org/10.1038/35098000, 2021. 

Scheffer, M. and van Nes, E. H.: Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size, Hydrobiologia, 584, 455–466, https://doi.org/10.1007/s10750-007-0616-7, 2007. 

Schulte-Uebbing, L. F., Beusen, A. H. W., Bouwman, A. F., and de Vries, W.: From planetary to regional boundaries for agricultural nitrogen pollution, Nature, 610, 507–512, https://doi.org/10.1038/s41586-022-05158-2, 2022. 

Seekell, D. A., Pace, M. L., Heffernan, S. J., Holbrook, K., and Hambright, D. (Eds.): Special issue: Nonlinear dynamics, resilience and regime shifts in aquatic communities and ecosystems, Limnol. Oceanogr., 67, S1–S4, https://doi.org/10.1002/lno.12072, 2022. 

Sereda, J., Bogard, M., Hudson, J., Helps, D., and Dessouki, T.: Climate warming and the onset of salinization: Rapid changes in the limnology of two northern plains lakes, Limnologica, 41, 1–9, https://doi.org/10.1016/j.limno.2010.03.002, 2011. 

Sim, L. L., Chambers, J. M., and Davis, J. A.: Ecological regime shifts in salinised wetland systems, I. Salinity thresholds for the loss of submerged macrophytes, Hydrobiologia, 573, 89–107, https://doi.org/10.1007/s10750-006-0267-0, 2006. 

Skerlep, M., Steiner, E., Axelsson, A. L., and Kritzberg, E. S.: Afforestation driving long-term surface water browning, Glob. Change Biol., 26, 1390–1399, 2020. 

Smith, L. C., Sheng, Y., MacDonald, G. M., and Hinzman, L. D.: Disappearing Arctic Lakes, Science, 308, 1429, https://doi.org/10.1126/science.1108142, 2005. 

Smith, V. H. and Schindler, D. W.: Eutrophication science: where do we go from here?, Trends Ecol. Evol., 24, 201–207, https://doi.org/10.1016/j.tree.2008.11.009, 2009. 

Smol, J. P.: Lakes in the Anthropocene: Reflections on tracking ecosystem change in the Arctic, Excellence in Ecology Book Series, International Ecology Institute (ECI), Oldendorf/Luhe, Germany, ISBN: 9783946729303, 2023. 

Smol, J. P. and Douglas, M. S. V.: Crossing the final ecological threshold in high Arctic ponds, P. Natl. Acad. Sci. USA, 104, 12395–12397, https://doi.org/10.1073/pnas.0702777104, 2007. 

Smol, J. P., Wolfe, A. P., Birks, H. J. B., et al.: Climate-driven regime shifts in the biological communities of arctic lakes, P. Natl. Acad. Sci. USA, 102, 4397–4402, https://doi.org/10.1073/pnas.0500245102, 2005. 

Sondergaard, M., Jensen, P. J., and Jeppesen, E.: Retention and internal loading of phosphorus in shallow, eutrophic lakes, Sci. World J., 1, 427–442, https://doi.org/10.1100/tsw.2001.72, 2001. 

Spears, B. M., Futter, M. N., Jeppesen, E., et al.: Ecological resilience in lakes and the conjunction fallacy, Nat. Ecol. Evol., 1, 1616–1624, https://doi.org/10.1038/s41559-017-0333-1, 2017. 

Spears, B. and Steinman, A. (Eds.): Internal Phosphorus Loading in Lakes: Causes, Case Studies, and Management, J. Ross Publish., ISBN: 978-1-60427-144-7, 2020. 

Szklarek, S., Górecka, A., and Wojtal-Frankiewicz, A.: The effects of road salt on freshwater ecosystems and solutions for mitigating chloride pollution – A review, Sci. Total Environ., 805, 150289, https://doi.org/10.1016/j.scitotenv.2021.150289, 2022. 

Stone, J. R., Saros, J. E., and Pederson, G. T.: Coherent late-Holocene climate-driven shifts in the structure of three Rocky Mountain lakes, Sage J., 26, 1103–1111, https://doi.org/10.1177/0959683616632886, 2017. 

Tátrai, I., Boros, G., Gyögy, Á. I., et al.: Abrupt shift from clear to turbid state in a shallow eutrophic, biomanipulated lake, Hydrobiologia, 620, 149–161, https://doi.org/10.1007/s10750-008-9625-4, 2008. 

Terhaar, J., Lauerwald, R., Regnier, P., Gruber, N., and Bopp, L.: Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion, Nat. Commun., 12, 169, https://doi.org/10.1038/s41467-020-20470-z, 2021. 

Thrane, J. E., Hessen, D. O., and Andersen, T.: The absorption of light in lakes: Negative impact of dissolved organic carbon on primary productivity, Ecosystems, 17, 1040–1052, https://doi.org/10.1007/s10021-014-9776-2, 2014. 

Tranvik, L., Downing, J. A., Cotner, J. B., et al.: Lakes and reservoirs as regulators of carbon cycling and climate, Limnol. Oceanogr., 54, 2298–2314, https://doi.org/10.4319/lo.2009.54.6_part_2.2298, 2009. 

Turetsky, M. R., Abbott, B. W., Jones, M. C., et al.:Carbon release through abrupt permafrost thaw, Nat. Geosci., 13, 138–143, https://doi.org/10.1038/s41561-019-0526-0, 2020. 

Valiente, N. P., Eiler, A., Allesson, L., et al.: Catchment properties as predictors of greenhouse gas concentrations across a gradient of boreal lakes, Front. Environm. Sci., 10, 1–16, https://doi.org/10.3389/fenvs.2022.880619, 2022. 

van Dijk, G., Lamers, L. P. M., Loeb, R., Westendorp, P.-J., Kuiperij, R., van Kleef, H. H., Klinge, M., and Smolders, A. J. P.: Salinization lowers nutrient availability in formerly brackish freshwater wetlands; unexpected results from a long-term field experiment, Biogeochemistry, 143, 67–83, https://doi.org/10.1007/s10533-019-00549-6, 2019. 

van Nes, E. H., Staal, A., van der Bolt, B., Flores, B. M., Batiany, S., and Scheffer, M. L.: What do you mean, “Tipping Point”, Trends Ecol. Evol., 31, 902–904, https://doi.org/10.1016/j.tree.2016.09.011, 2016. 

Velthuis, M. and A. J.: Veraart Temperature Sensitivity of Freshwater Denitrification and N2O Emission – A Meta-Analysis, Global Biogeochem. Cy., 36, e2022GB007339, https://doi.org/10.1029/2022GB007339, 2022. 

Wang, Y.-R., Hessen, D. O., Samset, B. H., and Stordal, F.: Evaluating global and regional land warming trends in the past decades with both MODIS and ERA5-Land land surface temperature data, Remote Sens. Environ., 280, 113181, https://doi.org/10.1016/j.rse.2022.113181, 2022. 

Walseng, B., Jensen, T., Dimante-Deimantovica, I., et al.: Freshwater diversity in Svalbard: providing baseline data for ecosystems in change, Polar Biol., 41, 1995–2005, 2018. 

Webb, E. E., Liljedahl, A. K., Cordeiro, J. A., et al.: Permafrost thaw drives surface water decline across lake-rich regions of the Arctic, Nat. Clim. Change, 12, 841–846, https://doi.org/10.1038/s41558-022-01455-w, 2022. 

Wei, J., Fontane, L., Valiente, N., Dörsch, P., Hessen, D. O., and Eiler, A.: Trajectories of freshwater microbial genomics and greenhouse gas saturation upon glacial retreat, Nat. Commun., 14, 3234, https://doi.org/10.1038/s41467-023-38806-w, 2023. 

Weyhenmeyer, G. A., Jeppesen, E., Adrian, R., et al.: Nitrate-depleted conditions on the increase in shallow northern European lake, Limnol. Oceanogr., 52, 1346–1352, https://doi.org/10.4319/lo.2007.52.4.1346, 2007. 

Wik, M., Varner, R., Anthony, K., et al.: Climate-sensitive northern lakes and ponds are critical components of methane release, Nat. Geosci., 9, 99–105, https://doi.org/10.1038/ngeo2578, 2016. 

Willco*ck, S., Cooper, G. S., Addy, J., and Dearing, J. A.: Earlier collapse of Anthropocene ecosystems driven by multiple faster and noisier drivers, Nat. Sustain., 6, 1331–1342, https://doi.org/10.1038/s41893-023-01157-x, 2023. 

Williams, W. D.: Salinisation: A major threat to water resources in the arid and semi-arid regions of the world, Lakes Reserv. Res. Manag., 4, 85–91, https://doi.org/10.1046/j.1440-1770.1999.00089.x, 1999.  

Williamson, C., Overholt, E., Pilla, R., et al.: Ecological consequences of long-term browning in lakes, Sci. Rep. 5, 18666, https://doi.org/10.1038/srep18666, 2016. 

Woolway, R. I., Kraemer, B. M., Lenters, J. D., et al.: Global lake responses to climate change, Nat Rev. Earth Environ., 1, 388–403, https://doi.org/10.1038/s43017-020-0067-5, 2020. 

Woolway, R. I., Sharma, S., and Smol, J.: Lakes in hot water: the impacts of a changing climate on aquatic ecosystems, BioScience, 72, 1050–1061, https://doi.org/10.1093/biosci/biac052, 2022. 

Yan, X., Xu, X., Wang, M., et al.: Climate warming and cyanobacteria blooms: Looks at their relationships from a new perspective, Water Res., 125, 449–457, https://doi.org/10.1016/j.watres.2017.09.008, 2017. 

Yang, H., Andersen, T., Dörch, P., Tominaga, K., Thrane, J. T., and Hessen, D. O.: Greenhouse gas metabolism in Nordic boreal lakes, Biogeochemistry, 126, 211–225, https://doi.org/10.1007/s10533-015-0154-8, 2015. 

Yao, F., Livneh, B., Rajagopalan, B., Wang, J., Crétaux, J. F., Wada, Y., and Berge-Nguyen, M.: Satellites reveal widespread decline in global lake water storage, Science, 380, 743–749, https://doi.org/10.1126/science.abo2812, 2023. 

Zhang, X., Ward, B. B., and Sigman, D. M.: Global Nitrogen Cycle: Critical Enzymes, Organisms, and Processes for Nitrogen Budgets and Dynamics, Chem. Rev., 120, 5308–5351, https://doi.org/10.1021/acs.chemrev.9b00613, 2020. 

Zhu, Y., Purdy, K. J., Eyice, Ö., et al.: Disproportionate increase in freshwater methane emissions induced by experimental warming, Nat. Clim. Change, 10, 685–690, https://doi.org/10.1038/s41558-020-0824-y, 2020. 

Lake ecosystem tipping points and climate feedbacks (2024)
Top Articles
Latest Posts
Article information

Author: The Hon. Margery Christiansen

Last Updated:

Views: 6325

Rating: 5 / 5 (70 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: The Hon. Margery Christiansen

Birthday: 2000-07-07

Address: 5050 Breitenberg Knoll, New Robert, MI 45409

Phone: +2556892639372

Job: Investor Mining Engineer

Hobby: Sketching, Cosplaying, Glassblowing, Genealogy, Crocheting, Archery, Skateboarding

Introduction: My name is The Hon. Margery Christiansen, I am a bright, adorable, precious, inexpensive, gorgeous, comfortable, happy person who loves writing and wants to share my knowledge and understanding with you.